地中海贫血

首页 » 常识 » 诊断 » 诺奖基因编辑技术CRISPR的前
TUhjnbcbe - 2021/3/1 0:58:00

热门报告:全球精准医学领域十大热门行研报告盘点

-年中国独立医学实验室行业市场供需预测及投资战略研究报告

本文中,笔者会对CRISPR/Cas进行全面科普,分五章来详细介绍CRISPR/Cas的前世今生。希望大家能够从中有所收获。

第一章:原理介绍

前言

提到CRISPR,大家耳熟能详的可能是麻省理工学院-哈佛大学Broad研究所、有着“CRISPR之父”之称的张锋,也可能是加州大学伯克利分校的女神科学家JenniferDoudna。且不论这两个机构正在如火如荼上演的CRISPR专利大战,我们能够在实验室利用CRISPR来轻松实现基因编辑还得感谢这两位杰出科学家。今天我们就来看看,CRISPR到底是怎么工作的。

CRISPR全称是ClusteredRegularlyInterspacedShortPalindromicRepeats(成簇的规律间隔的短回文重复序列),而Cas的全称是CRISPRassociated(CRISPR关联),由于名字太长,后来大家都简称为CRISPR/Cas系统。CRISPR/Cas这项技术自从问世以来,已经吸引了无数欢呼和掌声,在短短两三年之内,它已经成为了生物科学领域最炙手可热的研究工具,但其实CRISPR/Cas系统早就存在自然界中了。CRISPR/Cas系统是一种原核生物的免疫防御系统,用来抵抗外来遗传物质的入侵,比如噬菌体病*等。同时,它为细菌提供了获得性免疫(类似于哺乳动物的二次免疫),当细菌遭受病*入侵时,会产生相应的“记忆”。当病*二次入侵时,CRISPR系统可以识别出外源DNA,并将它们切断,沉默外源基因的表达,抵抗病*的干扰。是不是觉得和真核生物中RNA干扰(RNAi)的原理很相似?正是由于这种精确的靶向功能,CRISPR/Cas系统被开发成一种高效的基因编辑工具。在CRISPR/Cas系统中,CRISPR/Cas9系统是研究最深入,应用最成熟的一种类别。CRISPR/Cas9是继锌指核酸内切酶(ZFN)”、“类转录激活因子效应物核酸酶(TALEN)”之后出现的第三代基因组定点编辑技术。

结构介绍

CRISPR簇是一个广泛存在于细菌和古生菌基因组中的特殊DNA重复序列家族,充当了防御外源遗传物质的“基因武器”,分布在40%的已测序细菌和90%的已测序古细菌当中。下图展示了完整的CRISPR位点(Locus)的结构。其中,CRISPR序列由众多短而保守的重复序列区(Repeats)和间隔区(Spacers)组成。Repeats含有回文序列,可以形成发卡结构。而Spacers比较特殊,它们是被细菌俘获的外源DNA序列。这就相当于细菌免疫系统的“黑名单”,当这些外源遗传物质再次入侵时,CRISPR/Cas系统就会予以精确打击。而在上游的前导区(Leader)被认为是CRISPR序列的启动子。另外,在上游还有一个多态性的家族基因Cas,该基因编码的蛋白均可与CRISPR序列区域共同发生作用。Cas基因与CRISPR序列共同进化,形成了在细菌中高度保守的CRISPR/Cas系统。目前已经发现了Cas1-Cas10等多种类型的Cas基因。

工作原理

在具体的工作过程中,CRISPR序列和Cas蛋白配合,大体上分3步来执行防御功能。

外源DNA俘获

简单来说,CRISPR/Cas系统首先要取得一段外源DNA,实现“黑名单登记”。CRISPR/Cas系统将识别出入侵者(比如病*)的“名字”(PAM)并找到它的“身份证”(原间隔序列),然后把入侵者身份信息作为“档案”(间隔序列)记录到“黑名单”(CRISPR序列)中。下图展示了第一阶段的工作原理。当噬菌体病*首次入侵细菌,病*的双链DNA被注入细胞内部。CRISPR/Cas系统会从这段外源DNA中截取一段序列作为外源DNA的“身份证”,然后将其作为新的间隔序列被整合到基因组的CRISPR序列之中。因此,这段与间隔序列对应的“身份证”被称为前间隔序列(protospacer)。然而,“身份证”的选取并不是随机的。原间隔序列向两端延伸的几个碱基都十分保守,被称为前间隔序列临近基序(protospaceradjacentmotif,PAM)。PAM通常由NGG三个碱基构成(N为任意碱基)。病*入侵时,Cas1和Cas2编码的蛋白将扫描这段外源DNA,并识别出PAM区域,然后将临近PAM的DNA序列作为候选的前间隔序列。随后,Cas1/2蛋白复合物将前间隔序列从外源DNA中剪切下来,并在其他酶的协助下将原间隔序列插入临近CRISPR序列前导区的下游。然后,DNA会进行修复,将打开的双链缺口闭合。这样一来,一段新的间隔序列就被添加到了基因组的CRISPR序列之中。

crRNA合成

目前的研究表明,CRISPR/Cas系统共有三种方式(TypeⅠ、Ⅱ、Ⅲ)来合成crRNA,CRISPR/Cas9系统属于TypeⅡ(目前最成熟也是应用最广的类型)。当病*入侵时,CRISPR序列会在前导区的调控下转录出pre-CRISPR-derivedRNA(pre-crRNA)和trans-actingcrRNA(tracrRNA)。其中,tracrRNA是由重复序列区转录而成的具有发卡结构的RNA,而pre-crRNA是由整个CRISPR序列转录而成的大型RNA分子。随后,pre-crRNA,tracrRNA以及Cas9编码的蛋白将会组装成一个复合体。它将根据入侵者的类型,选取对应的“身份证”(间隔序列RNA),并在核糖核酸酶Ⅲ(RNaseⅢ)的协助下对这段“身份证”进行剪切,最终形成一段短小的crRNA(包含单一种类的间隔序列RNA以及部分重复序列区)。crRNA,Cas9以及tracrRNA组成的最终的复合物,为下一步剪切做好准备。

靶向干扰

如下图所示,在病*的二次感染中,Cas9/tracrRNA/crRNA复合物可以对入侵者的DNA进行精确的打击。复合物会扫描整个外源DNA序列,并识别出与crRNA互补的前间隔序列。这时,复合物将定位到PAM/前间隔序列的区域,DNA双链将被解开。crRNA将与互补链杂交,而另一条链则保持游离状态。随后,Cas9蛋白发挥作用,剪切crRNA互补的DNA链和非互补的DNA链。最终,Cas9使双链断裂(DSB)形成,外源DNA的表达被沉默。

应用价值

CRISPR/Cas的强大之处在于,其可以对基因进行定点的精确编辑。在向导RNA(guideRNA,gRNA)和Cas9蛋白的共同作用下,细胞基因组DNA(看成外源DNA)将被精确剪切。但是,被CRISPR/Cas9剪切需要满足几个条件。第一,待编辑的区域附近需要存在相对保守的PAM序列(NGG)。第二,向导RNA要与PAM上游的序列碱基互补配对。最基础的应用就是基因敲除。如果在基因的上下游各设计一条向导RNA(gRNA1,gRNA2),将其与含有Cas9蛋白编码基因的质粒一同转入细胞中,gRNA通过碱基互补配对可以靶向PAM附近的目标序列,Cas9蛋白会使该基因上下游的DNA双链断裂。随后生物体自身存在着DNA损伤修复的应答机制,会将断裂上下游两端的序列连接起来,从而实现了细胞中目标基因的敲除。如果在此基础上为细胞引入一个修复的模板质粒(供体DNA分子),这样细胞就会按照提供的模板在修复过程中引入片段插入(Knock-in)或定点突变(site-specificmutagenesis)。这样就可以实现基因的替换或者突变。随着研究的深入,CRISPR/Cas技术已经被广泛的应用,除了基因敲除,基因替换等基础编辑方式,它还可以被用于基因激活,疾病模型构建,甚至是基因治疗。

第二章:编辑DNA

首先,来看看曾经轰动一时的案例:中山大学研究人员利用CRISPR-Cas9校正人胚胎中的突变。中国科学家利用CRISPR/Cas9对人胚胎中会导致地中海贫血的β珠蛋白基因突变成功地进行修饰,目的是希望利用CRISPR对这种基因突变进行校正,以便实现利用基因疗法治疗地中海贫血。文章发表在《蛋白·细胞》(ProteinCell)杂志上[1]。

**就(首次在人胚胎细胞使用CRISPR技术)

β-地中海贫血是一种潜在地危及生命的血液疾病,它在全世界的患病率大约是十万分之一。研究人员利用来自一名β-地中海贫血患者的组织构建出克隆胚胎,随后对这些胚胎中的DNA进行了测序,发现一种单核苷酸错误,即应当为A的碱基被替换为了G。接下来他们研究利用CRISPR将这种碱基转换回去,即实现G到A。这也是首次证实利用CRISPR系统治愈人类胚胎中的遗传疾病是可行的。但这项研究造成巨大影响力的原因还有:它是在婴儿胚胎里面开展的,虽然医生丢弃的是不会成功孕育出婴儿的异常胚胎,但这点还是受到了部分学者的批评和攻击。

就在这不久之后,《新英格兰医学杂志》(NEJM)报道了巴塞尔大学研究人员利用CRISPR找到导致红细胞增多症的第一个遗传突变。[2]。

通过使用全基因组连锁分析和基因测序,研究人员发现所有受影响的家族成员的EPO基因中都缺少一个单碱基。而EPO的增加正是导致血红细胞过多产生的原因。但困惑的是,这个碱基的缺失导致了基因编码读码框架发生移动,最终导致EPO基因功能缺失而不是增强。但实际情况是,病人血液中EPO的含量是增加而不是降低。最终,还是CRISPR帮研究人员找到了答案。原来,EPO基因中还有一个隐藏的mRNA,正常情况下并不参与形成EPO。基因突变导致这个基因的读码框架发生移动,从而导致了这个基因产生了更多的EPO。

除了在血液方面的应用,CRISPR在发育方面也卓有建树。近期《自然》(Nature)就报道了英国和韩国的研究人员利用CRISPR/Cas9揭示OCT4基因在人胚胎早期发育中发挥着关键作用。在正常情形下,OCT4基因在人胚胎的最初几天发育中是有活性的,它驱动受精卵分裂,大约7天后形成一种有大约个细胞组成的球体,即囊胚。在实验中,他们用CRISPR/Cas9阻断人胚胎OCT4的表达后,这些胚胎的发育都停止了[3]。

CRISPR另外一个价值就是能够用来追踪细胞,这个功能在癌症方面都有着重要的作用。斯坦福大学的研究人员就将CRISPR基因编辑技术同DNA条形码技术结合,有效追踪癌症进展。

人类的癌症并不仅仅只有一种肿瘤抑制突变,其存在多种突变组合。为了了解不同的突变基因是如何相互作用的,研究人员们耗费了数年的努力来绘制图谱,包括构建多种不同谱系的遗传修饰化小鼠,其中每一种都携带不同的失活肿瘤抑制基因。而如果想探索所有的可能性组合,研究人员就需要上千只小鼠。

CRISPR-Cas9的强大之处在于,可以轻易地替换、修改或删除生物体内的基因序列,从而在单个小鼠的肺中创造出多种基因不同的肿瘤。问题在于,为了得出关于不同基因突变组合效应的有用结论,科学家需要一种精确的方法来标记追踪不同肿瘤的生长。但如果将CRISPR-Cas9和DNA条形码技术(利用生物体DNA中一段保守片段对物种进行快速准确鉴定的技术)相结合以此来追踪癌症的生长发展情况,就能帮助科学家们在实验室中复制出癌症患者机体中所观察到的遗传多样性。就比如将短的、独特的DNA序列(DNA条形码)黏附于小鼠肺内的单个肿瘤细胞中,这样每一个序列的功能就像是遗传条码,当每个癌细胞扩增时,条码的数量会随之增加。最后只需要将整个癌肺取出,然后用高通量的DNA测序和计算来分析条形码出现的频率,从而精确的确定肿瘤的大小。

也就是说,研究人员可以在同一个小鼠身上产生大量具有特定遗传特征的肿瘤,并在规模和精度上分别跟踪它们的生长。研究人员最终只在几个月之内就完成了相关实验,只用了不到24只小鼠。结果发表在《自然·遗传学》(NatureGenetics)上[4]。

无独有偶,Nature重量级子刊《自然·生物科技》(NatureBiotechnology)也报道了德国研究人员利用CRISPR/Cas9诱导的DNA瘢痕序列追踪细胞谱系[5]。

在生物界一直有一个问题困着大家,功能不同的细胞系到底来自于何处?而CRISPR有一个特点是总在确切的位点上进行切割,受此启发,德国科学家团队开发出一种被称作LINNAEUS(lineagetracingbynuclease-activatededitingofubiquitoussequence,通过对普遍存在的序列进行核酸酶激活的编辑来开展谱系追踪)的技术,它能够让人们确定细胞类型和每个细胞的谱系。

在斑马鱼胚胎细胞中如何切割DNA,在下一次细胞分裂发生之前,给DNA修复时间不超过15分钟。修复工作必须快速完成,这也是错误累积的地方,这种错误序列我们就称之为DNA瘢痕序列。DNA中的瘢痕序列具有随机的长度,而且它们的确切位置也会发生变化。子细胞在细胞分裂过程中遗传这些瘢痕序列。当这些瘢痕序列汇总在一起时就像条形码一样发挥作用,能够确定每个细胞的谱系。

因此研究人员设计了一个实验,在斑马鱼的胚胎内注入CRISPR-Cas9系统,这些斑马鱼事先被转入了红色荧光蛋白(RFP)。在接下来的时间内,Cas9重复性地切割斑马鱼体内的RFP。这些斑马鱼胚胎中的红色荧光逐渐消失的同时,数千个瘢痕序列在细胞中DNA损伤区域中形成。最终通过分析瘢痕序列,就能确定细胞是来自于哪个祖细胞。

综上所述,CRISPR在DNA编辑方面起着重要作用,也衍生出众多的新技术。

参考内容:

1.

1
查看完整版本: 诺奖基因编辑技术CRISPR的前